Pattern Blocks on a Geoboard
Home Up


For this activity you can either use an 11 peg by 11 peg geoboard or a geoboard template in your communicator. Notice that an x- and y-axis are labeled on both.

You will be looking for similar polygons. So what are the two properties that make polygons similar to each other?



Graph the six shapes, using one rubber band for each polygon. After your graph the shape give each polygon name the figure. Each shape should make a different shape.



Similar to Pattern Block Shape?



(0,8), (1,10), (3,10), (4,8), (3,6), (1,6)


(5,10), (9,10), (8,8), (6,8)


(6,6), (5,8), (4,6), (5,4)


(6,1), (7,3), (8,1)


(1,2), (1,4), (3,4), (3,2)


(9,2), (8,5), (9,8), (10,5)


Based on the criteria for similar polygons, tell which of the shapes on the geoboard are similar to their corresponding commercial pattern block model and which of the shapes are not similar. Be able to use mathematical reasoning to tell how you determined your answer.

In addition you could ask students to find the perimeter and area of each graph polygon.


Notice that the geoboard has 100 square units. Find the area of each polygon on the geoboard. Be ready to justify your answer.



The geoboard is 10 units by 10 units. Find the perimeter of each polygon on the geoboard.


Printer Friendly Copy of Directions


Similar Polygon Definition



Two shapes are similar if their corresponding angles are equal in measure and their corresponding sides form the same ratio.



These two triangles are similar

because all their corresponding sides are in the same ratio and the corresponding angles are congruent.